Mathematical and didactic analysis of a generating question to teach affinities and linear equations in two variables in secondary school

Authors

  • Estefanía Laplace Facultad de Ingeniería. Universidad Nacional de Centro de la Provincia de Buenos Aires

DOI:

https://doi.org/10.54343/reiec.v17i2.365

Abstract

This paper proposes the mathematical and didactic analysis of the generating question Q0: How to manage the school kiosk to obtain profit? which integrates a Study and Research Path (SRP) to teach, among others, mathematical organizations (OM) linked to the affinities and linear equations in two variables corresponding to the curricular design of the 4th year of the Argentine secondary school. The development of the SRP allows to initiate students into a functional algebraic modelling process, which is rare at this school level. The mathematical knowledge that this device would allow to study from the tree of questions arising from the generating question is briefly synthesized here, and some of the didactic decisions considered for the implementation of the SRP in the classroom are advanced.

Downloads

Download data is not yet available.

References

Bolea, P. (2002), El proceso de algebrización de organizaciones matemáticas escolares. Tesis doctoral. Departamento de Matemáticas, Universidad de Zaragoza.

Bolea, P., Bosch, M., Gascón, J. (2001). La transposición didáctica de organizaciones matemáticas en proceso de algebrización: El caso de la proporcionalidad. Recherches en Didactique des Mathématiques 21(3), pp. 247-304. Grenoble : La Pensée Sauvage-Éditions.

Chevallard, Y. (1984). Le passage de l'arithmétique a l'algébrique dans l'enseignement des mathématiques au collège – Première partie. L'évolution de la transposition didactique, Petit x, (5), pp. 51-94.

Chevallard, Y. (1989). Le passage de l'arithmétique à l'algébrique dans l'enseignement des mathématiques au collège. Deuxième partie : perspectives curriculaires : la notion de modélisation. Petite x, 19 pp. 43-72.

Chevallard, Y. (1990). Le passage de l’arithmétique a l’algébrique dans l’enseignement des mathématiques au collège. Troisième partie : voies d’attaque et problèmes didactiques. Petit x, 23, 5-38.

Chevallard, Y. (1994). Enseignement de l’algèbre et transposition didactique. Rendiconti del Seminario Matematico Università e Politecnico di Torino, 52 (2), pp. 175-237.

Chevallard, Y. (1999). El análisis de las prácticas docentes en la teoría antropológica de lo didáctico. Recherches en Didactique des Mathématiques, 19 (2), pp. 221-266.

Chevallard, Y. (2005). La place des mathématiques vivantes dans l’éducation secondaire : transposition didactique des mathématiques et nouvelle épistémologie scolaire. Disponible en http://yves.chevallard.free.fr/

Chevallard, Y. (2007). Passé et présent de la théorie anthropologique . Disponible en http://yves.chevallard.free.fr/

Chevallard, Y. (2009). La notion de PER : problèmes et avancées. Disponible en http://yves.chevallard.free.fr/

Chevallard, Y. (2012). Théorie Anthropologique du Didactique & Ingénierie Didactique du Développement. Journal du séminaire TAD/IDD. Disponible en http://www.aixmrs.iufm.fr/formations/filieres/mat/data/fdf/2011-2012/journal-tad-idd-2011-2012-7.pdf

Chevallard, Y. (2013). Enseñar matemática en la Sociedad de mañana: alegato a favor de un Contraparadigma Emergente. Journal of Research in Mathematics, 2(2), 161-182. doi:10.4471/redimat.2013.26

Gascón, J. (1993). Desarrollo del conocimiento matemático y análisis didáctico: del patrón de análisis-síntesis a la génesis del lenguaje algebraico, Recherches en Didactique des Mathématiques, 13(3), pp. 295-332.

Gascón, J. (1999). La naturaleza prealgebraica de la matemática escolar. Educación Matemática 11(1), 77-88.

Gascón, J., Bosch, M., & Ruiz-Munzón, N. (2017). El problema del álgebra elemental en la teoría antropológica de lo didáctico. En J.M. Muñoz-Escolano, A. Arnal-Bailera, P. Beltrán-Pellicer, M.L. Callejo y J. Carrillo (Eds.), Investigación en Educación Matemática XXI (pp. 25-47). Zaragoza: SEIEM.

Gazzola, M. P. (2018). Diseño, implementación y análisis de un Recorrido de Estudio e Investigación codisciplinar en matemática y física en la Escuela Secundaria. Tesis doctoral. Universidad Nacional del Centro de la Provincia de Buenos Aires.

Llanos, V. C. & Otero, M. R. (2013) Operaciones con curvas y estudio de funciones. Revista SUMA+ para la enseñanza y el aprendizaje de la matemática, 73, 17-24. Valencia, España

Llanos, V. C. & Otero, M. R. (2015). Inserción de un REI en la escuela secundaria: el caso de las funciones polinómicas de segundo grado. Relime, 18 (2), 245-275. DOI: 10.12802/relime.13.1824

Otero, M. R.; Llanos, V. C. y Gazzola, M. P. (2012). La pedagogía de la investigación en la escuela secundaria y la implementación de Recorridos de Estudio e Investigación en matemática. Revista Ciencia Escolar: enseñanza y modelización, 1 (2), 31-42. Universidad Central de Chile.

Otero, M. R.; Llanos, V. C.; Arlego, M. y Gazzola, M: P. (2017). Co-disciplinary Mathematics and Physics Research and Study Courses (SRC) within two groups of pre-service teacher education. Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education (CERME 10) pp. 2972-2979. Dublin, Ireland.

Otero, M. R. (2021). La formación de profesores: recursos para la enseñanza por indagación y el cuestionamiento. Libro digital. Tandil: Universidad Nacional del Centro de la Provincia de Buenos

Salgado, D., Otero, M. R. (2020). Enseñanza por investigación en un curso de matemática de nivel universitario: los gestos didácticos esenciales

Educação Matemática Pesquisa; vol. 22 p. 532 – 557.

Ruíz Munzón, N. (2010). La introducción del álgebra elemental y su desarrollo hacia la modelización funcional. Tesis doctoral. Departament de Matemàtiques. Universitat Autònoma de Barcelona.

Published

2022-12-27

Issue

Section

Articles