MATICES QUE DAN FORMA A LAS CONCEPCIONES SOBRE LA MODELACIÓN DE FUTUROS PROFESORES
DOI :
https://doi.org/10.54343/reiec.v16i2.311Mots-clés :
Croyances, modélisation, conception de tâches, mathématiques, futurs enseignants.Résumé
Reportamos los resultados de una investigación cualitativa, realizada en el contexto de un programa de formación docente. El objetivo fue documentar y caracterizar las concepciones de futuros profesores respecto a la modelación en la enseñanza de las matemáticas. Identificamos las concepciones de dos grupos de estudiantes de pedagogía en matemáticas, con distinto nivel de avance en su formación. Se analizan los datos cualitativos obtenidos sistemáticamente a través de una entrevista, un informe escrito que describe el diseño de una actividad de instrucción y cuestionarios de escala Likert. Los resultados nos permiten definir distintos matices que dan forma a las concepciones sobre la modelación de los participantes, diferentes a los que se reportan en la literatura, estos se pueden caracterizar de acuerdo con el significado que otorgan al término modelación, las concepciones sobre el papel de la modelación en el aula de clase y las características de las tareas de modelación. Encontramos que los participantes evidencian diferentes concepciones que dependen de la etapa de su formación profesional. Los resultados de este trabajo se proponen como un aporte a los formadores de profesores a fin de incentivar actividades que favorezcan la construcción de concepciones en los futuros profesores que potencien el desarrollo de habilidades de modelación
Téléchargements
Références
Beauchamp, C. & Thomas, L. (2009). Understanding teacher identity: an overview of issues in the literature and implications for teacher education, Cambridge Journal of Education, 39 (2), 175-189. DOI: 10.1080/03057640902902252
Blum, W. & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects – state, trends and issues in mathematics instruction. Educational Studies in Mathematics 22(1), 37-68.
Borromeo, R. (2013). Mathematical modelling in European education. Journal of Mathematics Education at Teachers College, 4(2), 18–24.
Beswick, K. (2012). Teachers' beliefs about school mathematics and mathematicians' mathematics and their relationship to practice. Educ Stud Math, 79, 127–147.
Cetinkaya, B., Kertil, M., Kursat Erbas, A., Korkmaz, H., Alacaci, C. & Cakiroglu, E. (2016). Pre-service Teachers’ Developing Conceptions about the Nature and Pedagogy of Mathematical Modeling in the Context of a Mathematical Modeling Course, Mathematical Thinking and Learning, 18(4), 287-314.
Chapman, O. (2006). Mathematical modelling in high school mathematics: teachers' thinking and practice. In Blum, W., Galbraith, P. L., Henn, H-W., and Niss, M. (eds.), Modelling and Applications in Mathematics Education, (pp. 325-332). The 14th ICMI-study. New York: Springer-Verlag.
Crouch, R. & Haines, C. (2007). Exemplar models: expert-novice student behaviours. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics: Proceedings from the twelfth International Conference on the Teaching of Mathematical Modelling and Applications (pp. 90–100). Chichester: Horwood.
Denzin, N.K. (1978). The research act: a theoretical introduction to sociological method, 2a ed. New York: McGraw-Hill.
Doerr, H. (1995). An integrated Approach to Mathematical Modeling: A classroom Study. Paper presented at the Annual Meeting of the American Educational Research Association, San Francisco, CA, 18, 1-32. Disponible en https://files.eric.ed.gov/fulltext/ED387349.pdf. Acceso 5 enero de 2021.
Doerr H. (2007). What Knowledge Do Teachers Need for Teaching Mathematics Through Applications and Modelling?. In: Blum W., Galbraith P.L., Henn HW., Niss M. (eds) Modelling and Applications in Mathematics Education (v. 10, pp. 69-78). New ICMI Study Series. Springer: Boston, MA. https://doi.org/10.1007/978-0-387-29822-1_5
Doerr, H., Ärlebäck, J. and Misfeldt, M. (2017). Representations of Modelling in Mathematics Education. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and application: Crossing and researching boundaries in mathematics education (pp. 71–81). Cham: Springer.
Ernest, P. (1989). The Knowledge, Beliefs and Attitudes of the Mathematics Teacher: a model. Journal of Education for Teaching: International research and pedagogy, 15(1), 13-33.
Förster, F. (2011). Secondary Teachers’ Beliefs About Teaching Applications – Design and Selected Results of a Qualitative Case Study. In: Kaiser, G.; Blum, W., et al. (Eds.), Trends in Teaching and Learning of Mathematical Modelling, International Perspectives on the Teaching and Learning of Mathematical Modelling (v.1, pp. 65-73). Springer: Netherlands. DOI 978-94-007-0910-2.
Frejd, P. (2012). Teachers’ conceptions of mathematical modelling at Swedish Upper Secondary school. Journal of Mathematical Modelling and Application, 1(5), 17-40.
Frejd, P. (2015). Mathematical modellers’ opinions on mathematical modelling in upper secondary education. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice: Cultural, social and cognitive influences (pp. 327–337). Cham: Springer.
Frejd, P. & Bergsten, C. (2018). Professional modellers’ conceptions of the notion of mathematical modelling: ideas for education. ZDM, 50, 117-127.
Furinghetti, F., & Pehkonen, E. (2002). Rethinking characterizations of beliefs. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: a hidden variable in mathematics education? (pp. 39-57). Dordrecht: Kluwer Academic.
Greer, B. (1997). Modelling reality in mathematics classrooms: The case of word problems. Learning and Instruction, 293-307.
Henningsen, M. y Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549.
Kaiser, G. (2006). The mathematical beliefs of teachers about applications and modelling – results of an empirical study. Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (pp. 393-400), Praga.
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 303–310.
Maaß, K. (2010). Classification scheme for modelling tasks, Journal für Mathematik-Didaktik, 32(2), 285-311.
MINEDUC (2015). Bases curriculares 7° a 2° Medio. Chile: Ministerio de Educación, Chile.
National Council of Teachers of Mathematics (NCTM) (2013), Common Core State Standards for Mathematics (CCSSM).
Niss, M., Blum, W. & Galbraith, P. (2007). Introduction. In BLUM, et al. (Eds.), Modelling and applications in mathematics education: The 14th ICMI Study (pp. 3-32). New York: Springer.
OCDE (2013), The Pisa 2012 Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy, PISA, OECD Publishing.
Philipp, R. A. (2007). Mathematics teachers' beliefs and affect. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning, (v.1, pp. 257-318) Charlotte, NC: Information Age Pub.
Ponte, J. P. (1994). Knowledge, beliefs, and conceptions in mathematics teaching and learning. In L. Bazzini (Ed.), Proceedings of the fifth International Conference on Systematic Cooperation between Theory and Practice in Mathematics Education (pp. 169-177). Pavia: ISDAF.
Simon, M. & Tzur R. (2004). Explicating the Role of Mathematical Tasks in Conceptual Learning: An Elaboration of the Hypothetical Learning Trajectory. Mathematical Thinking and Learning, 6 (2), 91-104.
Skott, J. (2015). Towards a participatory approach to 'beliefs' in mathematics education. In Pepin, B. & Roesken-Winter, B. (Eds.), From beliefs to dynamic affect systems in mathematics education (pp. 3-23). Heidelberg: Springer.
Stake, R. (1999). Investigación con estudio de casos (2ª ed.). Madrid: Ediciones Morata, . ISBN: 84-7112-422-X
Thompson, A. (1992). Teachers' beliefs and conceptions: A synthesis of the research. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning. New York: Macmillan.
Téléchargements
Publiée
Numéro
Rubrique
Licence

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.
Derechos de autor Revista Electrónica de Investigación en Educación en Ciencias
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Todo el trabajo debe ser original e inédito. La presentación de un artículo para publicación implica que el autor ha dado su consentimiento para que el artículo se reproduzca en cualquier momento y en cualquier forma que la Revista Electrónica de Investigación en Educación en Ciencias considere apropiada. Los artículos son responsabilidad exclusiva de los autores y no necesariamente representan la opinión de la revista, ni de su editor. La recepción de un artículo no implicará ningún compromiso de la Revista Electrónica de Investigación en Educación en Ciencias para su publicación. Sin embargo, de ser aceptado los autores cederán sus derechos patrimoniales a la Universidad Nacional del Centro de la Provincia de Buenos Aires para los fines pertinentes de reproducción, edición, distribución, exhibición y comunicación en Argentina y fuera de este país por medios impresos, electrónicos, CD ROM, Internet o cualquier otro medio conocido o por conocer. Los asuntos legales que puedan surgir luego de la publicación de los materiales en la revista son responsabilidad total de los autores. Cualquier artículo de esta revista se puede usar y citar siempre que se haga referencia a él correctamente.